Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Sustainability ; 15(11):8659, 2023.
Article in English | ProQuest Central | ID: covidwho-20232100

ABSTRACT

Developing a sustainable and reliable photovoltaic (PV) energy system requires a comprehensive analysis of solar profiles and an accurate prediction of solar energy performance at the study site. Installing the PV modules with optimal tilt and azimuth angles has a significant impact on the total irradiance delivered to the PV modules. This paper proposes a comprehensive optimization model to integrate total irradiance models with the PV temperature model to find the optimal year-round installation parameters of PV modules. A novel integration between installation parameters and the annual average solar energy is presented, to produce the maximum energy output. The results suggest an increase in energy yields of 4% compared to the conventional scheme, where tilt angle is equal to the latitude and the PV modules are facing south. This paper uses a real-time dataset for the NEOM region in Saudi Arabia to validate the superiority of the proposed model compared to the conventional scheme, but it can be implemented as a scheme wherever real-time data are available.

2.
NeuroQuantology ; 20(6):9927-9938, 2022.
Article in English | EMBASE | ID: covidwho-2305238

ABSTRACT

Alternative energy alternatives to traditional energy sources like coal and fossil fuels include solar PV and wind energy conversion systems. The solar and wind energy conversion system's maximum power may be obtained by activating the converters. There are several MPPT (Maximum Power Point Tracking) regulating methods for solar and wind energy conversion systems. For solar PV energy conversion systems, this study suggests two MPPT controlling techniques: Covid-19 MPPT and FLC-based MPPT. The two MPPT methods that are suggested are put into practise using MATLAB. The first Covid-19 approach that has been developed combines aspects of hill climbing and progressive conductance methods. Calculate the direction of the perturbation for the PV modules' operation using the incremental conductance approach. The method of ascending hills is straightforward and involves fewer variables. When dI/dV equals the incremental conductance, the Maximum Power Point (MPP) is attained using the incremental conductance approach. In the hill climbing approach, the MPP is determined by comparing the power in the present and the past. Both incremental conductance and change of power are taken into account in the proposed Covid-19 MPPT regulating approach to obtain the MPP. With this hybrid approach, solar PV generates the most electricity possible under all conditions of temperature and irradiance. As a result, the planned Covid-19 technique moves forward as intended and swiftly reaches the MPP.Copyright © 2022, Anka Publishers. All rights reserved.

3.
Heliyon ; 9(4): e15358, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2305066

ABSTRACT

Although the Covid-19 pandemic is still ongoing, the environmental factors beyond virus transmission are only partially known. This statistical study has the aim to identify the key factors that have affected the virus spread during the early phase of pandemic in Italy, among a wide set of potential determinants concerning demographics, environmental pollution and climate. Because of its heterogeneity in pollution levels and climate conditions, Italy provides an ideal scenario for an ecological study. Moreover, the selected period excludes important confounding factors, as different virus variants, restriction policies or vaccines. The short-term relationship between the infection maximum increase and demographic, pollution and meteo-climatic parameters was investigated, including both winter-spring and summer 2020 data, also focusing separately on the two seasonal periods and on North vs Centre-South. Among main results, the importance of population size confirmed social distancing as a key management option. The pollution hazardous role undoubtedly emerged, as NO2 affected infection increase in all the studied scenarios, PM2.5 manifested its impact in North of Italy, while O3 always showed a protective action. Whereas higher temperatures were beneficial, especially in the cold season with also wind and relative humidity, solar irradiance was always relevant, revealing several significant interactions with other co-factors. Presented findings address the importance of the environment in Sars-CoV-2 spread and indicated that special carefulness should be taken in crowded areas, especially if they are highly polluted and weakly exposed to sun. The results suggest that containment of future epidemics similar to Covid-19 could be supported by reducing environmental pollution, achieving safer social habits and promoting preventive health care for better immune system response, as an only comprehensive strategy.

4.
Curr Med Res Opin ; 39(5): 719-729, 2023 05.
Article in English | MEDLINE | ID: covidwho-2263885

ABSTRACT

OBJECTIVES: A world-wide immunization project was launched at the peak of COVID-19 pandemic to contain and minimize the adverse effects of SARS-CoV-2 virus. We carried out a series of statistical analyses in this paper to determine, confirm and quantify the impact of the vaccinations on COVID-19 cases and mortalities, amidst critical confounding factors-temperature and solar irradiance. METHODS: The experiments in this paper were carried out on the world data, data from 21 countries, and the five major continents. The significance of the 2020-2022 vaccinations on the COVID-19 cases and mortalities response data were evaluated via Hypotheses' tests. Correlation coefficient analyses were carried out to determine the extent of the relationship between vaccination coverage and corresponding COVID-19 mortalities data. The impact of vaccination was quantified. The effects of the weather factors-temperature and solar irradiance, on COVID-19 cases and mortalities data were analyzed. RESULTS: The series of hypotheses tests carried out reveal that vaccinations did not affect cases; however, vaccinations significantly impacted the mean daily mortalities in all five major continents and globally. The correlation coefficient analysis results show vaccination coverage to be highly and negatively correlated with daily mortalities in the world-the five major continents and most of the countries studied in this work. The percentage reduction in mortalities as a result of wider vaccination coverage was indeed significant. Temperature and solar irradiance impacted daily COVID-19 cases and mortalities data during the vaccination and post-vaccination periods. CONCLUSION: Results show that the world-wide vaccination against COVID-19 project had a significant impact in reducing mortalities and minimizing the adverse effects due to COVID-19 globally, in all five (5) major continents of the world and the countries studied in this work, however, temperature and solar irradiance still had effects on COVID-19 response in the vaccination eras.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , SARS-CoV-2 , Weather , Vaccination
5.
HKIE Transactions Hong Kong Institution of Engineers ; 28(4):213-220, 2021.
Article in English | Scopus | ID: covidwho-2081532

ABSTRACT

To efficiently fight against the COVID-19 pandemic, a sterilisation module using 265 nm UVC LED packages was developed. In this paper, the performance of the sterilisation module in terms of irradiance uniformity, junction temperature increase and sterilisation efficiency were characterised. The irradiance uniformity fluctuation across the four corners and the centre point in a 130 mm × 130 mm area was below 10%, exhibiting good uniformity. Uniform irradiance was important to achieve consistent sterilisation, which was the primary difference between the UVC LED package developed and commercial UVC LED packages. Key to achieving uniform irradiance was the structure, consisting of a stacked silicon reflector and a secondary optical lens designed by ray tracing simulation. The junction temperature increase of the 265 nm UVC LED package driving at 200 mA was only 28°C, sufficiently low to exhibit better reliability and performance. A 99.99% sterilisation efficiency on E. coli bacteria was achieved within one minute with UV dosage of 2.7 mJ/cm2 at 200 mA driving current. From the results, the novel 265 nm UVC LED package was a time-efficient solution for disinfection purposes. © 2021 The Hong Kong Institution of Engineers.

6.
Process Saf Environ Prot ; 166: 368-383, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1996494

ABSTRACT

Over more than two years of global health crisis due to ongoing COVID-19 pandemic, Romania experienced a five-wave pattern. This study aims to assess the potential impact of environmental drivers on COVID-19 transmission in Bucharest, capital of Romania during the analyzed epidemic period. Through descriptive statistics and cross-correlation tests applied to time series of daily observational and geospatial data of major outdoor inhalable particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) or ≤ 10 µm (PM10), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), Aerosol Optical Depth at 550 nm (AOD) and radon (222Rn), we investigated the COVID-19 waves patterns under different meteorological conditions. This study examined the contribution of individual climate variables on the ground level air pollutants concentrations and COVID-19 disease severity. As compared to the long-term average AOD over Bucharest from 2015 to 2019, for the same year periods, this study revealed major AOD level reduction by ~28 % during the spring lockdown of the first COVID-19 wave (15 March 2020-15 May 2020), and ~16 % during the third COVID-19 wave (1 February 2021-1 June 2021). This study found positive correlations between exposure to air pollutants PM2.5, PM10, NO2, SO2, CO and 222Rn, and significant negative correlations, especially for spring-summer periods between ground O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance with COVID-19 incidence and deaths. For the analyzed time period 1 January 2020-1 April 2022, before and during each COVID-19 wave were recorded stagnant synoptic anticyclonic conditions favorable for SARS-CoV-2 virus spreading, with positive Omega surface charts composite average (Pa/s) at 850 mb during fall- winter seasons, clearly evidenced for the second, the fourth and the fifth waves. These findings are relevant for viral infections controls and health safety strategies design in highly polluted urban environments.

7.
JOURNAL OF APPLIED BOTANY AND FOOD QUALITY ; 95:85-+, 2022.
Article in English | Web of Science | ID: covidwho-1911935

ABSTRACT

During the COVID-19 pandemic urban gardening became popular across the globe. Leafy vegetables supplement the daily diet and contribute to consumers health. Within the last decade kale (Brassica oleracea var. sabellica L.) gained popularity in urban gardening. However, shading due to unfavourable cardinal directions may reduce plant growth and accumulation of health-promoting secondary plant metabolites such as polyphenols, carotenoids and glucosinolates in kale. We compared authentic urban gardening conditions for kale grown in all four cardinal directions of a residential building. The overall concentration of carotenoids did benefit from sun exposed growing locations, including indoor cultivation behind UV light filtering glass windows, while concentrations of nutritionally important lutein did not differ among the locations and their altered growth conditions regarding abiotic stressors such as sun exposure, temperature, and water consumption. Total concentration of phenolics profited the most from direct sunlight but is severely reduced behind glass windows. Overall, satisfying growth rates of kale were achieved under all applied conditions, encouraging outdoor urban gardening with kale plants even in shaded locations.

8.
Light-Emitting Devices, Materials, and Applications XXVI 2022 ; 12022, 2022.
Article in English | Scopus | ID: covidwho-1891705

ABSTRACT

Ultraviolet Germicidal Irradiation (UVGI) is a proven method of disinfection for both bacterial and viral pathogens. Since the acceleration of the COVID-19 pandemic caused by SARS-CoV-2, the industry has witnessed significant technological innovation and an influx of UV-C LEDs, devices, and disinfectant enclosures. To ensure germicidal efficacy, UV-C LEDs and associated devices need accurate characterization of their optical power and irradiance. When UV-C sources are installed in enclosures and rooms, additional challenges arise that need to be evaluated to ensure germicidal efficacy is maintained. These challenges include 1) under- and over-dosing due to non-uniformity of UV-C dosage, 2) poorly understood room/chamber dynamics and reflectance, 3) shadowing, and 4) sensor, material, and source degradation. Here, we introduce a new detector portfolio that is calibrated at critical UV-C wavelengths, such as 265 nm, and enables real time UV-C Irradiance measurements at near-field and far-field. Temporal monitoring of irradiance allows for real time dosage calculation. Seasoned optical components ensure accurate detector performance and enable source output degradation monitoring. An adaptable API, network capability, and a dashboard facilitate simultaneous monitoring of multiple detectors and easy integration with existing installation infrastructure. With a proprietary cosine diffuser, these detectors include an exceptional f2 directional response making them ideal for deployment in rooms, enclosures, and HVAC systems. © COPYRIGHT SPIE. Downloading of the is permitted for personal use only.

9.
MAPAN |Journal of Metrology Society of India ; 37(2):237-249, 2022.
Article in English | ProQuest Central | ID: covidwho-1889067

ABSTRACT

Ultraviolet-C (UVC) radiation-based sanitization has globally gained enormous importance in the current COVID-19 (caused by SARS-COV-2 virus) pandemic situation. The effectiveness of radiation sanitization is quantified in terms of ‘radiation dose’, which in turn is derived from a radiometric parameter ‘irradiance’, measured using UVC radiometer. Metrological traceability of irradiance/dose measurement is essentially required for achieving requisite accuracy of measurements, and hence germicidal efficacy. In the present article, the derivation of traceability for irradiance measurement using UVC radiometer is demonstrated. The critical conditions to be considered while using detector/radiometer for measuring UVC irradiance/dose in practical conditions are elaborated, avoiding which, significant errors in the UVC irradiance/dose may arise, and hence, may compromise the performance of the Ultraviolet Germicidal Irradiation (UVGI) devices.

10.
Energies ; 15(7):2346, 2022.
Article in English | ProQuest Central | ID: covidwho-1785580

ABSTRACT

Energy consumption is steadily increasing with the ever-growing population, leading to a rise in global warming. Building energy consumption is one of the major sources of global warming, which can be controlled with renewable energy installations. This paper deals with an advanced evacuated hybrid solar photovoltaic–thermal collector (PVT) for simultaneous production of electricity and domestic hot water (DHW) with lower carbon emissions. Most PVT projects focus on increasing electricity production by cooling the photovoltaic (PV). However, in this research, increasing thermal efficiency is investigated through vacuum glass tube encapsulation. The required area for conventional unglazed PVT systems varies between 1.6–2 times of solar thermal collectors for similar thermal output. In the case of encapsulation, the required area can decrease by minimizing convective losses from the system. Surprisingly, the electrical efficiency was not decreased by encapsulating the PVT system. The performance of evacuated PVT is compared to glazed and unglazed PVTs, and the result shows a 40% increase in thermal performance with the proposed system. All three systems are simulated in ANSYS 18.1 (Canonsburg, PA, USA) at different mass flow rates and solar irradiance.

SELECTION OF CITATIONS
SEARCH DETAIL